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ABSTRACT 90
47

This investigation studies optimal control of linear sampled-data
systems where the control is subject to saturation. The system is de-
scribed by the state-space method. The control is considered to be
optimal when it minimizes a performance index which is defined as a sum
over the sampling instants of a quadratic function of the states and |
controls.

The solution begins with the Principle of Optimality. A form is
assumed for the optimal return function, and recurrence relations are
derived for the one-input case which are different depending on whether
the optimal control is or is not saturated. The optimal control is
shown to be a piecewise linear function of the states. A computing
method that uses the recurrence relations to solve the infinite stage
regulator problem is presented and discussed in detail. This method
requires less computer time and memory than would straight dynamic pro-
gramming.

Both one- and two-input control are considered. The two-input case
requires a third set of recurrence relations for use when one input is
saturated and the other is not. More inputs can be handled using the
same methods, but the complexity increases rapidly with the number of
inputs. A detailed discussion of a simple method for finding the mini-
mum of a positive definite quadratic function in two variables subject
to the constraint that the minimum be on or within a rectangle is pre-
sented.

Four examples showing the optimal control of second-order systems
determined by the computing method given in this report are presented

and discussed.
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I. INTRODUCTION

A. OUTLINE OF THE PROBLEM

As an example of the problem investigated in this report, consider
a space vehicle whose attitude is to be controlled by reaction wheels
or gyros. Various disturbances, perhaps impulsive as from collisions
with micrometeorites, produce an error in attitude which must be cor-
rected., In applying the control, the integral over time of the attitude
squared-error plus the squared-control is to be minimized.

Because the control torgque is subject to saturation, a nonlinearity
is inherent in the system. Thus it is expected that the optimal control
will be a nonlinear function of the states of the system--the attitude
error and velocity. This optimal control function is to be stored in a
small special-purpose digital computer called a digital controller.

The introduction of a computer makes the system sampled-data. The
computer determines from the states of the system at each sampling in-
stant the correct optimal control to apply over the next sampling
interval,

Since the system is now sampled-data, rather than minimize an inte-
gral it is logical and convenient to minimize the sum over time of the
attitude squared-error plus the squared-control at the sampling instants.

More generally, this investigation studies optimal control of linear
sampled-data systems where the control is subject to saturation. The
system will be described by the state-space method developed by Kalman
snd Bertram [Ref. 1].

At each sampling instant the system is assigned a performance number,
which is a quadratic function of the state error and control. The sum
of the performance numbers over a given number of samples is called the
performance index. Only the transient regulator problem--that of finding
the control sequence which, from a given initial condition with no ex-
ternal disturbances and no commands, minimizes the performance index--
will be considered.

The sampling rate is often fast enough that a sampled-data system
can be closely approximated, for the purpose of analysis, by a continuous

system. In this investigation, however, the sampling rate is considered
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to be slow encugh that the sampling process introduces significant

effects into the performance of the system.

B. SUMMARY OF RELATED WORK

There is a considerable body of literature on the subject of optimal
control of sampled-data systems, but almost no mention of the specific
problem presented here,

Using the Principle of Optimality, the problem without constraints
on the control was solved by Kalman and Koepcke [Ref. 2]. They show
that for the infinite stage regulator problem the optimal control takes
the form of stationary, linear feedback gains. Work on this problem
was also done by Henry [Ref. 3].

Several researchers have worked on the problem investigated here,
though using minimum time response as the criterion of optimality.

Among these are Kurzweil [Ref. 4], Desoer and Wing [Ref. 5], and Kalman
[Ref. 6],

Merrian [Refs. 7, 8], using his parametric expansion method, has
studied the problem in the continuous case.

Bellman's computational method of dynamic programming [Ref. 9] solves,
among others, problems of the type studied here when the dimension of
the state vector is small. The special problem of this report, minus
constraints on the control is mentioned by Bellman and Dreyfus [Ref. 10].

Quadratic performance criteria have been used by many researchers in
both the continuous and sampled-data cases.

The state-space method of describing linear sampled-data systems is
discussed in detail by Kalman and Bertram [Ref. l], Kalman [Ref. 11},
Gunckel [Ref, 12], and Rauch [Ref. 13].

C. OUTLINE OF NEW RESULTS

For the first time in the literature the problem of computing the
optimal feedback coefficients of a sampled-data system with bounded con-
trol using quadratic performance criteria is discussed in detail.

In Chapter II a mathematical description of the system and the per-
formance criterion is given, and the problem formulation is presented.

Two examples using this formulation are discussed.

SUDAER-148 -2 -




Recurrence relations necessary to the computation method are derived
in Chapter III for the single-control case. The optimal control is
shown to be a piecewise-linear function of the states.

In Chapter IV a general computing method is presented for the single-
input case, and problems connected with the computations are discussed
in detail. The method is also compared with dynamic programming. It is
shown that, because it takes advantage of the information contained in
the recurrence relations, the method developed here requires much less
computer time and memory than would dynamic programming.

Chapter V extends the work to the case where the system has two con-
trolling inputs. Extension to systems with more inputs presents no
Tformal difficulties but is not discussed due to its complexity.

Results of computer solutions of four examples are presented and

discussed in Chapter VI.
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II. STATEMENT OF THE PROBLEM

This investigation considers those sampled-data systems that can be
adequately described by linear-difference equations. These equations
will be written in the state-space form used by Kalman and others. For

conciseness, vector-matrix notation will be used throughout.

A. THE SYSTEM

The plant, or system to be controlled, is described by the linear

vector-difference equation
z(n + 1) = ¢z(n) + au(n) (2.1)
and the vector equation

y(n) = Mz(n), (2.2)

(n) is an (m x 1) state vector,
y(n) is a (p x 1) output vector,
(n) is a (g % 1) input (control) vector,
® is an (m ¥ m) transition matrix,
A is an (m x g) distribution matrix,
M is a (p x m) output matrix.

All vectors are considered to be column vectors. Row vectors will
be written, for example, as E?(n), where T denotes the transpose
operation. z(n) is the measurable output vector. If all the states
are directly measurable, then M 1s the identity matrix.

Since physically the control variables cannot be unbounded, each
element of the control vector E(n) is bounded from below by the
corresponding element of a vector g_ and from above by the vector

+
o . That is,

a” <un) <o (2.3)

The control vector E(n) will have dimension one (i.e., it will be
a scalar) in Chapters III and IV. Chapter V will extend the results to
higher dimensional u(n).

SUDAER-148 T




B. THE PERFORMANCE CRITERION

If a system is to be optimized, some criterion must be chosen that
determines how well the system is operating. In this investigation a
single number that characterizes overall performance is assigned to the
system at each sampling instant. This number, called the performance
number Yn’ is defined to be a quadratic function of the difference
between the actual output of the system, Z(n), and the constant desired
output Y3 plus a quadratic cost on the control required to achieve
the output. Mathematically this is
]T

¥ = [y(n) -y 0 eg(n) - yg) +w(n - Dra(n - 1), (2.%)

n
where Q' and T are positive semidefinite symmetric matrices. With

no further loss in generality let = 0.

Y3
Y can be stated in terms of z(n) Dby using Eq. (2.2).

T T
Y =z (n)Qz(n) + u(n - Lru(n - 1), (2.5)
where Q 1is a symmetric positive semidefinite matrix defined by
T
Q=MQM. (2.6)

Given an initial condition z(0), the control is considered optimal
if it minimizes in N stages the sum of the costs Yn. This sum, called

the performance index, is denoted by JN{E(O)}.
N
I(z0)] =) (g (m)aa(n) + u'(n - Dru(n - 1)) (2.7)
n=1

Although the performance index is limited to quadratic functions,
many useful problems can be formulated using criteria of this type.
Integral-squared-error has been used with continuous systems for some
time, and sum-squared-error is a logical extension to use with sampled-
data systems. The above formulation allows not only squared-error

terms, but also cross-products between the states, to be charged. Often
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the energy used for control must be conserved, and the charge on squared-
control allows for this. Sqguared terms also provide a simple analytical
approximation to absolute value.

The principal concern of this investigation is the infinite stage

regulator problem; thus the performance index is
lim
= . .8
3 [2(0)] = 7 I, (2(0)] (2.8)

C. THE PROBLEM STATEMENT

The problem can now be precisely stated: Given the system defined
by the linear vector-difference Eq. (2.1), and given the bounds on the
control defined by the vector-inequality (2.3), find for all initial
conditions z(0) the control sequences u[z(0)], u(z(1)], u[z(2)], ...
that minimize the performance index Jx[E(O)].

Finding the optimal control for all states distinguishes the con-
trol problem from the optimal trajectory problem. In the latter

usually only one or a few initial states are of interest.

D. EXAMPLES

Two examples of the above formulation will be given. The solution
to these examples will be discussed in Chapter VI.

For the first example consider a space vehicle whose attitude is
to be controlled to an inertially fixed reference direction by reaction
wheels. 1In its simplest formulation the small angular motion of the
vehicle about a principal axis can be studied by considering the vehicle
as an inertia with moment of inertia I about that axis [Ref. 1h].
The state variables are the attitude error 6 and its derivative
6 = d@/dt. The sampling interval is T seconds long, and the control
is held constant over the sampling interval by a zero-order hold [Ref.
15]. The system is shown in Fig. 1.

The equations of motion are

zl(t) = zg(t)
. ult
2(t) = 2 )., (2.9)

SUDAER-148 -6 -
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FIG. 1. BLOCK DIAGRAM OF SYSTEM IN FIRST EXAMPLE.

The hold takes the value of uw* at the sampling instant and holds it

constant at that value until the next sampling instant. That is,
u(t) = uw*(nt), for n1 <t < (n+ 1)7. (2.10)

Solving Egs. (2.9) for zl[(n + 1)t and zg[(n + 1)T) in terms
of zl(nT), zg(nT), and u(nt) gives the ® and A matrices. A simple
way to determine these matrices is to let, one at a time, an independent
variable 2)5 25 OT U at time nt be unity while the others are
zero and solve for the dependent variables zy and z, at time
(n + 1)T. Thus, for example, let the Laplace transform of u(t - nT)

be U(s) = 1/s and solve for Zl(s), which is

1 1

Z (s) = — U(s) = —. (2.11)
L 152 Is3
The inverse transform is
2
_ (t - n1)
zl(t -n7) = - (2.12)
Letting t = (n + 1)1 gives 611(T)-
T2
611(1) = ﬁ. (2'13)

In the same manner the other elements of the ¢ and A matrices

can be found. These are

1 7 1 12/2
D = s A= 3 . (2.14)
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A performance criterion needs to be chosen. M 1is the identity
matrix, which means both attitude error and its rate of change can be
measured directly. Assume the performance number is the sum of the
attitude squared-error and the squared-control. Furthermore, assume
the cost of an error in attitude is to be weighted equally with the cost

of control. Thus
Q: F) F: l- (2-15)

The problem then is: For each initial condition E(O) find the

control sequence u(0), u(l), ... that minimizes the performance index
[0}
2 2
J [z(0)] ==}; {zl(nT) +u [(n-1)1]). (2.16)
o2
n=1

From here on, to conform with the original problem statement, the
T will be dropped from the arguments, with no implication that 7T = 1.

As a second example consider an artificial satellite orbiting the
earth. Using small angle approximations and neglecting other terms of
small magnitude, the pitch equations of motion are decoupled from roll
and yaw. The vehicle can be described in pitch as an inertia with
moment of inertia I [Refs. 14, 16]. An important external force acting
on the satellite is exerted by the gravity gradient. For small values
of 6, this force 1is proportional to the attitude error 6 with

constant of proportionality k, as shown in Fig. 2.

il
Q.

"
[ws}

+ *
a u
—> —/T—> HOLD

2

7]

FIG. 2. BLOCK DIAGRAM OF SYSTEM IN SECOND EXAMPLE.
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From Fig. 2 the equations of motion can be written down by inspection.

2, (t)

25(t)

25(t) = -(k/I)z,(t) + u(t)/I (2.17)

For this example the method of findihg gll will be shown in detail.
Conceptually it is easier in this case to consider the transfer function
from Zg(s) to Zl(s) and let ze(n) be the delta function. This has
the effect of making zl(n) = 1 as desired. Thus

z,(s) = m z,(s); z(s) = 1. (2.18)
Therefore
g,,(1) = cos (p7) (2.19)
where
52 = k/I. (2.20)

Similarly the entire ¢ and A matrices can be found, and the

vector-difference equation is written as

cos (81)  (1/p) sin (p1) (1/8°) (1 - cos (p1)]

z(n + 1) = z(n) + % u(n).
-8 sin (Br) cos (B7) (1/B) sin (B7)
(2.21)
The performance index for this example is chosen as
2
JOO[E(O)] =Z z1(n). (2.22)
n=1

The solutions to both of the preceding examples are discussed in

detail in Chapter VI.
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IIT. RECURRENCE RELATIONS

A. SOLUTION WITH UNBOUNDED CONIROL

Before considering the case where the control E(n) is bounded, the
solution to the unbounded control problem will be derived in detail.
Here there is no simplification in having u(n) a scalar. The system

z(n + 1) = #z(n) + su(n) (3.1)

y(n) = Mz(n). (3.2)

Given an initial condition 2z(0) the control sequence u(0), u(1), .y

E(N - 1) is to be found that minimizes the performance index
N

NlZ }ﬁ 2 (n)z(n) + u'(n - L)ru(n - 1)]. (3.3)

f A

o
N

CamnN
(@]

g
n

n=1

The solution begins by defining IN[E(O)]’ called the optimal return

function, as the minimum value of JN[E(O)]. This I [E<O)] has a known

N
and simple form:

I,[2(0)] = z7(0)P2(0), (3.1)

where PN is a symmetric, positive semidefinite matrix. That this form
is correct will be proved by induction later.
By definition
N+1

Iy (20)] = 50y 0D - iy ) (2 (maz(n) + of(n - Dru(e - 1)),

n=1

(3.5)
Since z(l) is determined solely by the choice of u(0) and not by the
other u(n), Eq. (3.5) can be factored as

SUDAER-148 - 10 -




min

120001 = (o) \z T(1)Qz(1) + u'(0)ru(o)

N+1
+ 501) w(@) o &iﬁ)z 125 (n)az(n) + u'(n - 1)ru(n - 1)]} _
- - T on=2

(3.6)

Noting that the last group of terms is exactly IN[E(l)] gives

L12(0)] = 36y (27 (1e(1) + 2 (0)ru(0) + L[z (3.7)
The above equation could have been arrived at directly using the
Principle of Optimality [Ref. 9]. This principle states that the minimum
cost of an N+1 stage process is the minimum of the sum of the cost of
the first stage and the minimum cost of the remaining N stages. (Note
that the arguments of the state and control variables increase with time,

while the subscript on I, decreases with time.)

N
Substituting Egs. (3.1) and (3.4) into (3.7) gives

min

Tp, 2001 = T3y (2(0) + cn(0)'(@ + B,) @2(0) + &u(0)] + ' (0)Tu(0))

(3.8)
Completing the square on the right side of (3.8) and defining
| u'(0) = Ay, ,2(0) (3.9)
| ‘ - —[A(Q+P T (Q+P)1> (3.10)
transforms Eq. (3.8) into Eq. (3.11):
‘ Iy,q02(0)] = mgg) ([u(0) - u(0)7 [87(Q + By)a + T1[u(0) - u'(0)]
| v F(0)(Q + B 02(0)
T
| -z (O)Aml A (Q + PN)A + P]AN+1_Z_(O)}. (3.11)
- 11 - SUDAER-148




The control u(0) occurs in only the first term of (3.11). If the
matrix [AT(Q + PN)A + '] is positive definite the optimal control is

unigue. Then the minimum value, zero, of this first term occurs only at

u(0) = u'(0). (3.12)

The matrix will be positive definite if T* 1s positive definite or if
Q is positive definite and the columns of A are linearly independent.
Tt will not be positive definite if I = O and the columns of A are
linearly dependent [Ref. 12]. 1In other cases this matrix might be singu-
lar, although no such difficulty was encountered in the examples of
Chapter VI.

Equation (3.12), along with Egs. (3.9) and (3.10), defines the optimal
value of u(0).

The recurrence relation for P is determined by equating Eq. (3.11)

N+1
with (3.4) when wu(0) = u'(0).

I, [2(0)] = 2 (0)o'(a + B )oz(0)

-z (O)A§+l{

A:(Q + PN)A + P]AN+lE(O)
5

= 27 (0)Py, 12(0). (3.13)

Since (3.13) must hold for all z(0) the recurrence relation becomes

P = ®T(Q + PN)(® + AL

Nl )s (3.14)

N+1
where the relation

T T T .
A [A(Q s PPA + T] = ®(Q + PO (3.15)

has been used to simplify (3.1h4).
Equation (3.13) shows that if the quadratic form for I, 1is correct,

N

then IN+l has the same form. The quadratic form is trivially correct

for IO since
IO[E(O)] =0 (3.16)
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for all z(0). To complete the mathematical induction the form for Il

must be shown to be correct. I, is determined from Egs. (3.13) and
(3.10) noting that P. = O. Equation (3.15) is again used to simplify

0
the result.
1,12(0)] = 2'(0)g Q6 - A(ATAA + 1) 'ATa9]5(0). (3.17)

Thus Il[E(O)] has the required quadratic form.

The solution proceeds as follows: Since 1,(2(0)] = 0, Py = 0. Be-
ginning with PO = 0 calculate Al' From Al and PO calculate Pl.
This iteration process is continued until all the AN of interest are
calculated. If the plant is controllable the AN will tend to a limit
as N increases [Refs. 11, 12]. Therefore, for the infinite stage
regulator problem the optimal control in the unbounded case takes the

form of a stationary, linear function of the states.

B. RECURRENCE RELATIONS WITH BOUNDED CONTROL

In the first part of this section the control u(n) will be a vector
of any dimension. This will make it possible to use Eags. (3.18) through
(3.25) in Chapter V, where two-dimensional contrcl is considered in
detail. When the actual minimization over u(0) 1is done in this section,
u(0) will be considered a scalar.

Limiting the possible range of the control wu(n) to
- +
a <uln) <a (3.18)

complicates the solution greatly. The derivation in this section is the

same as that in Sec. A up to Eq. (3.7). Equation (3.7) becomes

I, [2(0)] = - M0 ¢ (2 (1)az(1) + u (0)ru(0) + Ifz(1)7).

a’ <u(0)<a

(3.19)
IN[E(O)] takes the form, as will later be proved by induction,

IN[E(O)] = ET(o)PNE(o) + _Z_T(O)RN + Rﬁg(o) + Cy (3.20)
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where

P is an (m x m) positive semidefinite symmetric matrix,

N
Ry 1s an (m x 1) vector,
CN is a scalar.

Substituting (3.1) and (3.20) into (3.19) gives

[2(0)] = + {([@z(0) + AE(O)]T(Q + Ppp) [02(0) + Au(0)]

e o< 1(0) <a

+ ET(o)pE(o) + [®z(0) + AE(O)]TRN + Rﬁ[@g(o) + Lu(0) ] + CN}.

(3.21)
Again completing the square on E(O) gives
min

Ty (200)] = oo (o) <o [2(0) = w(O) T I87(Q + )6 + rI(u(0) - u'(0)]

+ ET(O)«DT(Q + PN)fb_z_(o) + ET(o)q)TRN + Rifbg(o) + C

N
-[A_ z(0) + B ]T[AT(Q + P )A + P][A_ _z(0) + B 1
N+1- N+ 1 N N+1= N1
(3.22)
where
B T -1, T
Ay, = -[A7(Q + PN)A + T]A(Q + PN)® (3.23)
as before, and
B = -[A(q+ P )A+ ] IATR (3.24)
N+1 N N =
u'(0) = Ay 1z(0) + By - (3.25)

The next step is to choose the u(0) that minimizes Eq. (3.22).
This is easy when u(0) is a scalar or when the distribution matrix A
is an (m x m) diagonal matrix--an unlikely possibility. For the rest of
this chapter and in Chapter IV, u(0) will be considered a scalar, that

is, there is only one controlling input to the system.
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Since [A?(Q + PN)A + I"] 1s supposedly nonsingular (it is in fact a

positive scalar), the minimum of Eq. (3.22) occurs at

o if u'(0) >a
w(0) =¢{ uw'(0) if a < u(0)<d (3.26)
o if u'(0) <o

The final step is to derive recurrence relations for P R

and CN+1'
that the form assumed for IN[E(O)] is correct. Proof that the form for

N+1’ TN+1’
The existence of these relations gives the necessary proof

Il[E(O)] is correct is the same as in Sec. A and will not be repeated.
The recurrence relations are different depending on whether or not

u(0) 1is saturated. When wu(0O) is unsaturated, that is, when

a” < u'(0) < a+, the relations can be obtained by equating (3.20) with

(3.22) along with u(0) = u'(0).

T

RNE(O) +C

I,,,12(0)) = 2 ()37 (a + P)oz(0) + 2 (0)& Ry + .

z(0) + B +l]T[AT(Q + PN)A + F][AN+1_Z_(O) + B

- [AN+l— N

N+l]
| - 27 (0)P, ,2(0) + Z (O)Ry, | + B 12(0) + Cp . (3.27)

Thus the recurrence relations when u(0) 1is unsaturated are

T
Py, =® (Q + PN)(‘D + AAN+1) (3.28)
. T
Rpp = (@ 0Ap, ) Ry (3.29)
| -
e = O * BB (3.30)

where the simplifying relations

T T T
oy [87(Q + PO+ T] = 97(Q + PO (3.31)

and
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B, [87(Q+ PO + T = REA (3.32)

have been used.
When u(n) is unbounded, these recurrence relations reduce, as they

must, to that given in the unbounded case, Eq. (3.14). The equations for

A and for P are the same as in the unbounded case. Since R =
N+1 N+1 0
all RN = 0. Since all RN = 0, all BN+l = 0. Finally, since CO = 0,

all CN = 0.

The recurrence relastions when u(0) is saturated can be determined

+ -
by substituting u(0) = a, where « vrepresents either « or « , into

0,

either Eq. (3.21) or (3.22) and equating the result with (3.20). Equating

(3.21) with (3.20) gives

Typq 20001 = pz(0) + 2ot (q + Py) 02(0) + Lo] + o®r

+ [Qg(o) + Ax]TRN + Rﬁ[@g(o) + Lol o+ CN

7 T
= 2 (0)Py,12(0) + 27(0)Ry ) + Ry 12(0) + Cp s

(3.33)
The recurrence relations when control is saturated are thus
P = (Q+ P )0 (3.34)
N+1 N/~ )
R, =& (R + (Q+ P )] (3.35)
2 T ' T
Cpp = Oy * @ (A (Q+PN)A+P]+2O(A Ry (3.36)

By the same arguments used in the unsaturated control case, the form
of IN[E(O)] is shown to be correct by mathematical induction.
The principal equations derived in this section are summarized at

the end of this chapter.

SUDAER-148 - 16 -




C. DISCUSSION

Beginning with a zero-stage process and calculating backward in time,
as long as all the stages have optimally unsaturated control, the R

C

’
W and BN+l remain zero. The first stage backward in time that ig
saturated causes RN and CN to be nonzero, and they will remain non-
zero for the rest of the stages.

If it were known a priori which terms of the optimal control sequence
u(0), u(1), ..., u(N - 1) were saturated and which were not, the solu-
tion would proceed simply as in the unbounded case. Beginning with a
one-stage process, Al and Bl could be calculated. This requires no
knowledge of whether or not the optimal control is saturated. Next,
knowing whether the optimal control u(0) equals a+, a_, or is unsatur-

ated, P R, and C, could be calculated. This computational scheme

2
could bi continued for as many stages as desired.

Unfortunately, nothing is known about the control sequence before-
hand; thus the above computationzl scheme cannot be used. At each stage
it is not known whether to use the recurrence relations for unsaturated
or for saturated control. A computational method that does not require
this a priori information is needed. Such a method will be discussed in
Chapter IV.

The method described in the second paragraph of this section is still
useful, however, and it has the advantage that it is exact. It can be
used to perfect estimates of the optimal control obtained by other methods.
For example, suppose the optimal control sequence was determined by a
method requiring a discrete state space such as dynamic programming or
the method described in the next chapter. Errors due to quantizing the
state space will build up, and thus the true minimum and the true optimal
unsaturated control will only be approximated. Now, however, it is known
whether the control at each stage is saturated or not, and the simple
computational scheme above can be applied to obtain the exact optimal
control. Boundaries of all control regions of the examples in Chapter

VI were checked in this msnner.

- 17 - SUDAER-148



SUMMARY OF PRINCIPAL EQUATIONS FOR SINGLE-INPUT CONTROL

Optimal return function

1,12(0)] = 2°(0)2,2(0) + 2 (0)Ry + Kiz(0) + ¢, (3.20)

Optimal control

o if u'(0) > o (saturated)
u(0) = 4§ u'(0) if a <u'(o) < o (unsaturated) (3.26)
o if u'(0) < a” (saturated)
Definitions
u'(0) = AN+lE(O) + B (3.25)
e L O N T S I R (3.23)
T -1.7T
By, = -[A7(Q + PN)A + T]A Ry, (3.24)
Recurrence relations:
Unsaturated control
T
P, =@ (Q + PN)(CD + AAN+1) (3.28)
T
Rpppp = (P4 M0 ) Ry (3.29)
T
1 = O * BBy (3.30)
Saturated control
T
P = @ (0 + PP (3.34)
RN+1=<DT[RN+ (@ + Pp)ba] (3.35)
2 T T
Copp = CN +a [AT(Q + PN)A + ] + 20N Ry, (3.36)
Starting conditions
PO = 0, RO = 0, CO =0

SUDAER-1L8 _ 18 -




IV. COMPUTATIONAL ASPECTS

This chapter describes a method of using the equations derived in
Chapter III to determine the optimal control of any system described by
Egs. (2.1) and (2.2). This method, which requires a digital computer,
calculates the optimal control from any point within a bounded region of
state space for the infinite stage regulator problem. Useful facts per-
taining to the actual computations are discussed.

Before describing the computing method recommended in this report,
the straight dynamic programming approach will be briefly discussed for

comparison.

‘A, DYNAMIC PROGRAMMING APPROACH

The basic dynamic programming approach to the problem 1s straight-
forward but requires a very large and very fast digital computer to
solve for the optimal control of even small systems. This method repeat-
edly uses the fundamental functional equation of dynamic programming

[Ref. 9] which, put into the form required for this problem, is

Ty [200)] = o Bioyeq (9 (2(1)] + Iyra(1) 1, (4.1)
where
T T
I [z(1)] =z (1)az(1) + u (0)ru(o), (k.2)

and IN[E(l)] is the minimum cost associated with initial condition
z(1). Equation (k4.1) is recognized as being the same as Eq. (3.19).
Although only the single-input case is being considered in this
chapter, functions of the control u(n) will be written in vector-matrix
form for use later in this report and for future work. Of course in
the single-input case the last term of Eq. (4.2) is simply ug(o)r.
In words, Eq. (k.1) states that the minimum cost IN+1[E(O)] from
initial state 2z(0) is the minimum over the allowable values of the
control u(0) of the sum of the cost of the first step, which takes

the state to z(1), plus the minimum cost of being in state z(1).
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Before computing, both the state space and the control space nmust
be quantized; that is, a discrete set of values is chosen over which
the calculations are to be made. This set must be dense enough to pre-
vent errors from accumulating during the calculations as the result of
interpolation.

The calculation is divided into two parts: First the IN[E(O)],
called the optimal return functions, are calculated backward in time for
all N and all E(O)' Second, 1if actual optimal trajectories are
desired, these are calculated forward in time using the optimal control
calculated in the first part.

The first part of the calculation is the time-consuming part. Be-
ginning with IO[E<1)] = 0 for all z(1), Il[E(O)] is calculated from
Egs. (L4.1) and (L4.2) and the state-transition equation

z(1) = 2(0) + Lu(0). (5.3)

For a given value of z(0) and for each value of u(0), Jl[E(l)] is
calculated and the minimum is stored as Il[E(l)]' The optimal value of
u(0) 1is also stored. This calculation is performed for each z(0).

Now that the values of Il[E(l>] are known for all z(1), the
IE[E(O)} can be calculated, again using Egs. (4.1) and (4.2) along
with the state-transition equation (4.3). Since the 2z(1l) calculated
from E(O> by the state-transition equation will probably not be one
of the discrete values for which the Il[_z_(l)] were calculated, the
correct value of Il[g(l)] to use in Eq. (4.1) must be found by inter-
polation. It ig the interpolation that causes the most significant
errors to arise in the computation. Higher order than linear interpola-
tion can be used, but since the interpolation must be done a very great
number of times the computing time is increased significantly.

The process described in the last paragraph is continued until the
optimal return functions and the optimal control for the desired N
stages are calculated. In the case of the infinite stage regulator
problem, stages must be calculated until the optimal control for each

z(0) =at stage M+l is the same as the optimal control for each 2(0)

at stage N. This may require very many stages of calculation.
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The fast memory requirements at each stage are three words for each
value of z(0): IN+l[E(O)], IN[E(O)], and the optimal wu(0) for stage
N+1l. Thus, for example, a two-dimensional problem with 100 values of
zq and 100 values of 22 would require 30,000 words of fast memory
storage. This is approaching the limit of present-day computers. A

three-dimensional problem with 100 points to each dimension would require

3,000,000 words of storage, thus exceeding the limit of present computers--

a difficulty often referred to as the "curse of dimensionality."
The method discussed next for computing the special problem considered

in this report requires far less computing storage and computing time

" than does straight dynamic programming.

B. A COMPUTING METHOD

The basic dynamic programming algorism makes no use of the recurrence
relations derived in Chapter III. By taking advantage of this additional
knowledge about the solution, considerable savings can be made in both
computer time and memory, making it possible to solve much larger prob-
lems. '

To facilitate the discussion of the computing method, which involves
calculating regions of optimal control, several definitions will be
made:

1. Region of linear control. In the infinite stage regulator problem
there exists a region about the origin in state space where the
control for the first and all future stages is unsaturated. Such
a region will always exist if the plant is controllable, since in
the unbounded control case the control is a linear function of

the states and is zero at the origin. This region will be called
the region of linear control, or simply the linear region.

2. Region of first saturation. If z{(0) is not in the region of
linear control, at least one stage before the state-space trajec-
tory reaches the linear region will have saturated control. The
first stage backward in time (or the last stage forward in time)
that is saturated will be called the region of first saturation.

3. Unsaturated region. Any region where the control u(0) is given
by the equation u(0) = u'(0) = Ap,12(0) + Byyy will be called an
unsaturated region. The region of linear control is an unsaturated
region, but there will be others. Although the control in any
unsaturated region is linear, the term "linear region" will refer
only to the region of linear control.
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4, Saturated region. This is a region where the control is either
u(0) = of or u(0) = a~. Throughout, the term « will be used
to denote either o or «-. Saturated regions will also be
referred to as alpha-plus regions or alpha-minus regions.

5. z(1) region. This refers to a region that has already been calcu-
lated, and from which new regions will be calculated.

6. z(0) region. A z(0) region is one which is being presently
calculated from a 2z(1) region. Regions are calculated backward
in time as in dynamic programming; thus a z(0) region is calcu-
lated from a z(1l) region. (The actual trajectories are, of
course, from a z(0) region to the =z(1l) region from which it
was calculated.) o -

The method to be described in detail is basically as follows: First

the optimal feedback coefficients AN+1 for the infinite stage regulator
problem with unbounded control are calculated. Once AN+l is known,
the region of linear control can be computed. Using the same A

N+1
the two regions of first saturation are calculated. From each of these

regions of first saturation are calculated an alpha-plus region, an
unsaturated region, and an alpha-minus region. Turther regions are
calculated from each of these last regions, and the process is continued
until all the state space of interest is covered with regions.

In essence, assuming N stages are being calculated backward from
the linear region, this method considers all possible control sequences
u(0), u(1), ..., u(l-1), and determines the optimal sequence for each
point in state space. Since at each stage the control can take cne of
three values--a+, u'(0), or o --it might be thought that this method
requires considering 3N possible control seguences, a staggering
possibility. In practice, the number of control sequences considered
is far less. Most of the sequences will be found to be optimal for no
points in state space, and these sequences can be dropped from further
consideration as soon as they are discovered. The method described here
determines these nonoptimal sequences at the earliest possible time
during the computing.

As in dynamic programming, the state space must be quantized. How-
ever, the control is determined by the formulas of Chapter III and is

not quantized.
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A flow diagram of the computing is given in Fig. 3. First the

optimal control feedback coefficients for the linear region are

A
N+1
calculated along with the corresponding PN matrix, using the recurrence

relations for unsaturated control. Beginning with P2 = 0, A is cal-

0 1
culated. From A P is calculated. From P A is calculated.

171 2
This iterative procedure is continued until the AN+l

limit. That these AN+l will converge is discussed by Kalman [Ref.

11] and Gunckel [Ref. 12]. The unsaturated control recurrence

converge to a

relations for R and the equation for B show these to

N+1’° CN+1’ N+1’

be zero for all N, since RO =0 and CO = 0.
Second, the region of linear control is calculated. The optimal

control formulas for this region are
u(n) = u'(n) = AN+lz(n) (L.4)
- +
a <u'(n) <a (L.5)

for all n, where the AN+l is that calculated in the first step. Two
bounds on this region can be found immediately by setting u(n) in

Eq. (4.4) equal to o and o . Thus two bounds are

+
@ = Ay, 2(0)

Q
!

= AN+lE(n). (k.6)
For each 2z(0) on and within the boundaries (4.6) calculate
2(1) = (o + 2ag ,)z(0). (%.7)

Only those z(0) which determine 2z(1) that are on and within the
boundaries (4.6) can be in the region of linear control. From each

2z(0) within the boundaries (4.6), enough points forward in time must

be calculated to ensure that the z(0) is actually in the linear region.
In the two-dimensional examples of Chapter VI, where o = -, only
z(0) and z(1l) both needed to be within the boundaries (L4.6). 1In

general more stages must be calculated.
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FIG. 3. FLOW DIAGRAM OF COMPUTING METHOD.
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The third step is to calculate the two regions of first saturation.
These are the E(O) regions that go optimally into the linear region
with u = a. Thus the alpha-plus region is defined by inequality (L4.8)
and Eq. (4.9):

+
1 —_

u'(o) = AN+15(0) > (4.8)

-1 + L
z(0) =0 7[2(1) - Lo’ ], (k.9)

where E(l) is in the linear region. The AN+1 is the same as that
used 1n calculating the linear region, since it is derived from the same

PN' The alpha-minus region is defined in a similar manner. If a+ =

-2, the alpha-minus region (and all regions derived from it) need not
be calculated, since it is symmetric with respect to the origin to the

alpha-plus region (and those derived from it). Finally, the P, R

s s
and CN are calculated for the regions of first saturation, us?ng fhe
saturated control recurrence relations.

The above steps are essentially initializing; the principal calcu-
lations now begin. There are now two E(l) regions from which to
calculate--the two regions of first saturation. Consider the calcu-
lations from one of these. First the A and B are calculated

N+1 N+1

using the PN and RN from the E(l) region. The optimal control

for three E(O) regions--an alpha-plus region, an unsaturated region,

and an alpha-minus region--is determined from these A and BN+1'

N+1
Each of these three regions must satisfy two relations as follows:

1. Alpha-plus region.

2(0) = 07 (z(1) - 20" (%.10)
u'(0) = Ay 12(0) + By > o (%.11)

2. Unsaturated region.
2(0) = (o + &y, )7 2(1) - Ay ] (b.12)
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a” < u'(0) = Ay, ,2(0) + By < ot (4.13)

3. Alpha-minus region.

2(0) = ¢ "[2(1) - Lo ] (b.14)

i

1l

u'(0) AN+l_Z_(O) + By, < a” (k.15)
In each of these equations E(l) is in the E(l) region, and for a
z(0) to be in the new 2z(0) region, both the equation and the ine-
quality for that region must be satisfied. Most of the regions calculated
will be found to contain no states E(O)' It is for this reason that
there are considerably legs than 3N regions to consider.

The Egs. (%.10), (4.12), and (L.14) are written as though z(0)
will always be calculated from E(l) through an inverse relation. It

is of course equally possible to calculate 2z(1) from z(0) Dby
z(1) = ®z(0) + Lu(0) (L.16)

for all 2(0) in the quantized state space and keep only those z(0)
for which the corresponding 2z(1l) is in the desired z(1) region.
There are advantages and disadvantages for both methods of computing.
Calculating E(l) from E(O) is easier because no "holes" can develop
in the z(0) region. (Holes are points that belong within a region
but are not calculated as being in the region.) However, because a
very large percentage of the states z(0) will not be in the z(0)
region, considerable computing time is consumed by computing E(l)
from z(0).
Computing z(0) from z(l) consumes less computing time because
less points are considered. Only those E(O) calculated from the
E(l) in a particular E(l) region are considered. However, if the
z(0) region contains more points than the z(1) region, holes will
develop, and care must be taken to eliminate them. This 1s particularly
a problem when calculating unsaturated regions. Also the points E(O)

calculated from z(1l) will be in a somewhat random order in the computer
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memory and time must be taken to put them in some orderly and useful
sequence. |

Equations (4.10), (4.12), and (4.14) assume that the inverses of
certain matrices exist. If the state variables have been chosen so that
the minimum number necessary to completely characterize the system is
used, the matrix ¢ will be nonsingular; thus its inverse will exist.
The other matrix assumed to be nonsingular is (& + AAN+1). This matrix
is nonsingular if I is not zerc. However, if [ = O this matrix will
always be singular. The following proof will show an even stronger
result: If D=0 and (P + AAN41) has dimension (m x m), and A has
rank q, (m is the dimension of z and q 1s ordinarily the dimension
of u,) then (b + AAN+1) has rank no greater than m - g.

The proof is as follows. Consider a square matrix M of dimension m.
If a nontrivial vector c¢ can be found such that E?M = 0, then by defi-
nition M 1is singular. If there exist q nontrivial linearly independent
vectors ¢ such that there are q 1linearly independent vector equations
E?M = 0, then q of the columns of M are linear combinations of the

other m - g columns. The kernal of M 1is at least g and its rank is

no greater than m - q.
The g nontrivial linearly independent vectors that show the matrix

@ + AAN+1) has rank no greater than m - g are the columns of (Q + PN)A.
Thus

s@+ P+ e ) = 8@+ R - AAT(Q + PATTAT(Q + B0

(4.17)

il
O

This singularity can therefore be predicted in advance and the computer

program written accordingly.

R

The next step is to calculate the P and CN for the z(0)

) 24
regions Jjust calculated that actually cogtaig points. Regions that are
found to contain no points are ignored entirely. The new z(0) regions
are now stored in the fast memory as new z(1l) regions. The old z(1)
region can now be discarded.

The output can include a description of the points in the region,
the type of region (alpha-plus, unsaturated, or alpha-minus), and the

B . i
AN+1’ N1’ PN’ RN, and CN The optimal cost can also be calculated and
written.
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This process of calculating z(0) regions is continued until the

entire state space of interest is covered with regions.

C. DISCUSSION

This new program runs much more guickly than straight dynamic program-
ming because the optimal control for each point is known from the recurrence
relations. The memory requirements are also much smaller since only the
2(0) reglons and a single 2z(1l) region need be in the fast memory at one
time. It is convenient, however, to store all unused E(l) regions in
the fast memory. Because of greater speed and less storage requirements,
this new program can handle problems of larger dimension than can be run
with straight dynamic programming. There is still, however, a limit to
the silze problem that can be run. A comparison of memory requirements
is given for a specific example in Chapter VI. The restriction that the
control be a scalar 1s removed in the next chapter.

The question of whether regions computed in this manner will overlap
is still open. BSuch an overlap did not occur in any of the exemples of
Chapter VI. If, after computing, some regions do overlap, a comparison
of the optimal costs from these regions can be made using their respec-
tive P.'s, R

N
be chosen.

's, and CT‘s, thus enabling the true optimal control to

N N
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V. TWO-INPUT CONTROL

So far, only the solution to the single-input case has been completed
in detail. This chapter extends these results to the case in which the
control .E(n) ig a two-dimensional vector. The solution is considerably
complicated by the fact that one of the inputs may be saturated while the
other is not. Although they are not discussed here, this chapter indi-
cates the extensions and changes that must be made when the control has

dimension higher than two.

A. THE PROBLEM

The description of the system and performance criterion is the same
+ -
as given in Chapter II. The control B(n) and its bounds & and

are now two-dimensional wvectors.

u, (n) o o}
1 + 1 _ 1
E(n) = p) a = P ) a = _ (5.1)
ug(n) o,y a,
Control is limited by the vector inequality
- +
o <un) <a. (5.2)

The problem i1s: Given any initial condition E(O)’ find the optimal
control-vector sequence u(0), u(l), u(2), ... that minimizes the perform-

ance index J [z(0)].
o2

B. THE SOLUTION

The equations for IN+1[E(O)] derived in Chapter III up through Eg.
(3.25) were written in vector notation so that they could be used in
this chapter. Equation (3.21) is written here as the starting point of

the solution:

Ty (201 = g'_B?ér)lggﬂ [@2(0) + &u(0)17(q + Py) [02(0) + Lu(0)]

+ ET(o)rE(o) + [92(0) + Lu(0) ]TRN + %[@5(0) + Lu(0) ] + CN}.

(5.3)
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As in Chapter IIT the square is completed on the control vector wu(0).
The result is Eq. (3.22):

3 i ( . T T ,
I:N’_{_l[’_z-(o)j = o —;( )S ARt [E<O) - u(0) ) [&a7(Q + PN)A + P][E(O) -u (0)]
2 (0)0 (8 + Pez(0) + 2 (0% Ry + Rgz(0) + O
T T
- [Ay, @(o) + By (D (Q + PN)A + DA, lz(o) + By, l]},
(5.54)
where AN+l’ BN+1’ and u'(0) are given by Egs. (3.23) through (3.25).

The nmirimum without regafd te bounds cccurs at H(O> = E’(O). If
the resulting u(0) satiefies the vector inequality (5.2), then u(0) =
E‘(O) ig the optimel control. However, if one or both of the elements
of B’(O) are out of bounds, the situation is much complicated.

Before presenting a careful algebraic discussion of a method for
finding the minimum of Eg. (5.4), =2 more intuitive geometrical discussion

will be given.

C. GEOMEIRICAL DIBCUSSION OF THE MINIMUM

Figures La through Lf show the two-dimensional control space. Each
pcint represents a particular control (uj, ug). The rectangle, whose
+ - e -
=] T i = X = =
sides are given by Uy R al, > X and Uy ag,
reglion of allowable control.

bounds the

Geometrically, a positive definite quadratic function in two variables
is =20 ellipse. In each figure are drawn concentric ellipses, which are
loci of constant JN l O) The value of JN+1[E(O)] decreases as
the ellipse size decreases. The absolute minimum occurs at the center
of the ellipses, which has coordinates (ui, ué).

The geometrical problem then is to find the point in the control
space that is both on the smallest possible ellipse and in or on the
rectangle. Algebraically this is the same problem as expressed by the

now-familiar equation

min
I, [2(0)] Q—SE(O)SQHJN”[E(O)]}' (5.5)
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If the center of the ellipses is in the rectangle, as shown in Fig.
Ma, then the minimum occurs at (ui, ué). If the center is outside the
rectangle, as chown in Figs. b through 4f, then it is clear that the
minimum occurs on the boundary, since any control within the rectangle
is on a larger ellipse than one either tangent to the boundary or touch-
ing a corner.

Figures 4b and Lc show the case where one ul, in this case wul, is
greater than its bound, while the other ui is within its bounds. 1In

+

both cages the optimal control of Uy is a2’ but the optimal value of

Uy can be anything. To determine ul, the optimal value of u2 = a;

is substituted into Eqg. (5.3) or (5.4), and by completing the square

on u the value of ul that minimizes the function is found. This

1
value, called ui, may or may not be in bounds. The optimal u is
then
o irou > ol (Fig. )
L 1
1 * - 1" + .
u = uy it al <uf <oy (Fig. bLe) (5.6)
al if ul' <« al

Note that the value of ui does not 1n any way indicate the optimal
value of Uy -

Figures Ld through Uf show cases where both ug and u} are outside
the bounds. In these cases all that can be sald without further calcula-
tion is that at least one of the ui gives the optimal control.
Geometrically this means that the optimal control is on one of the two
boundaries nearest the center of the ellipse, a fact that will be proved

algebraically in the next section. Since it is not known which ui gives

the correct result, both ui and u! must be calculated. Assume ui

2
and ué are greater than az and a; respectively as in the figures.
Then ui is calculated as the optimal value of Uy (neglecting satura-
ticn of ul) with u2 = a;, and ug ig likewise calculated. Since only

one of the assumptions made in calculating the ui was necessarily cor-
rect, only one of the u'" 1is necessarily correct. However, as shown in
i
the next section, both u!' calculated determine correctly their respective
i

optimal u; -
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If the correct optimal value of u, is a; as shown in Figs. 4d

through U4f, then the value of ui calculated is correct. The optimal

u is thus

1
ofi oW > o{ (Fig. 1)
u = u) if ol <ul < ofi (Fig. ke) (5.7)
O‘i if w < oc]'_ (Fig. Lr)

Note that even though the value of ui suggests that the optimal value

of Uy is a;, the real optimal value can be far different, even ai.
The next section algebraically proves that the u;, where calculated,

give the optimal values of u. in all cases.

D. ALGEBRAIC DETERMINATION OF THE MINIMUM

To simplify the notation in this section, consider only the part of

JN+1LE(O)] that is quadratic in u. This is

£ = (u-u) K- ) (5.8)
where
(u, - )
(u -u')-= ) (5.9)
(u2 - ul)
and
kll klE
K = [AT(Q + P)A+ T] = (5.10)
k12 k22

K 1is a positive definite symmetric matrix, and hence the smallest
value £ can have is zero, which occurs only at u = u'. If

- +
a <u' <o, the optimum value of u 1is clearly u= u'.

The quantities ug have a somewhat more general meaning in this

section than in the last section. For example ui, is the optimum value
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of uy (ignoring saturation) for any given value of U, not Just ag.
It is derived by completing the square on £ with respect to Uy - Thus
£ = (u, - u’)gk +2(u, - u)(u, - Wk . + (u. - u’)gk
> 1 1 11 1 1 2 2712 2 2 22
(5.11)
£ = (u, - u”)gk - u”gk + terms not involving u.. (5.12)
1 1 11 1711 1
By equating (5.12) with (5.11) an equation for u) 1s determined:
- 1
. (uy - uk .
u = - A : (5.13)
11
Likewise, '
1" (ul - ul)klg = 1
us, = u2' - " . (5.14)
22

The optimal control is determined when four equations are simultarne-

ously satisfied. These are Egs. (5.13) and (5.14) along with

+ . " +
al if ul > Ql
u = ui if al <ul < Oi (5.15)
- g " -
a i ul < al
+ ) " +
a2 if u2 > a2
u, = ug if a, < ug < a; (5.16)
- . " -
a2 if ug < a2

These four equations can be solved on an analog computer very simply,
but this is not much help here. The following proofs show a simple way
to determine the optimal values of uy and Uy - In the following dis-
cussion ui will be called not admissible when either ui > a; or

u! < a;. Otherwise it will be called admissible.
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Two cases need to be considered: (1) only one ul is not admissible,
and (2) neither ui is admissible. Before beginning two inequality
relations involving the elements of a symmetric positive definite matrix
must be stated. These can be found in nearly any book on matrix theory

[Ref. 17].
kjp >0, (and ky, >0), (5.17)
k. -k K> 0 (5.18)

11500 = %1 > 0. .

1. Case 1

The first case occurs when one ui is admissible while the

other is not. For definiteness let

al ¢w <al (5.19)

w > a;. (5.20)

It will now be shown that the optimal value of u is ag regardless

2
of the optimal value of u, . From (5.13)

) [-(uy - w)) Ik,

' - u! (5.21)
1 1 kll
The quantity in brackets is positive regardless of the choice of U,
because of inequality (5.20). Thus (ui - ui) has the same sign as klE'
. . 1" 1 . — i1
If k12 is negative or zero, then ul < ul, and either u, = uy
or u, = al. Thus
1" 1
u < uy <y (5.22)
Therefore
- ] " - y. .
0>uy -y >uf -ul (5.23)
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When klg is negative, multiplying inequality (5.23) through by

klE/k22 reverses the inequality signs. The result is of course trivial

is zero.
when klE

- 1 LU ! - 1
o< (u, - )k, P (u] - )k, _ (u, - u3)x
22 - Koo k%00

2 (5.24)

The right side of (5.24) is determined by using Eq. (5.21).

If klE is positive or zero, the same steps outlined in the last

paragreph can be taken, and the result is again (5.24).

Equation (5.24) shows that the last term in Eq. (5.14) is positive
or zero, regardless of the sign of k.. Using (5.24), Eq. (5.14) can

be written as the following inequality:

2
1
(uy - wb)i),

2
un > ul + (5.25)
2 = 2 kllk22
kiQ ki2
w2 L)t e T (5.26)
11722 1122

o]
Since kzg/k < 1 as shown by (5.18), the term in parentheses in

1152
(5.26) is positive. Substituting (5.20) into (5.20) makes the inequality

even stronger.

2 2
X K
12
wp > el (1) (5.27)
11722 11522
The only u, that satisfies both (5.27) and (5.16) is w, = a;. Sub-
stituting w. = u" into (5.27) leads to a contradiction.

2 2
The conclusion is that if ui is not admissible and uj (3 # 1)

is admissible, the optimal value of uy equals the nearest bound to

ui, while u(j is determined from u'l.
2. Case 2

The second case occurs when neither ui nor ué is admissible.

Por definiteness let
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' +
up > oy (5.28)

+

uy > A, (5.29)
Equations (5.13) and (5.14) written in the form of (5.21) show that
both (ui - ui) and (ug - ué) have the same sign as k

12
If klz is positive or zero then
W > ul > al (5.30)
=1 1
ul > ul > ap (5.31)
<~ 2 2
. . + +
Thus the optimal control is u; = al, u2 = a2.
If klE is negative the situation is much more complicated. The
values of ui and ué given by (5.28) and (5.29) determine that either
uy = aI or u_2 = a; or both. This will be proved next.

+
The proof assumes that both the optimal u2 < a; and ui < al

occur simultaneocusly, and arrives at a contradiction. Since both condi-
+
tions cannot occur simultaneously, at least one u, must equal ai.
1" + . — 1 . - h
If uy < al, then either u, =uy or u = al. Thus
1 "
u > u > ul. (5.32)

Combining (5.32) with (5.13) gives

- 1
(uy - uk

kll

(5.33)

- 1 -
0> uy ul >

The direction of the inequality is changed when (5.33) is multiplied
through by the negative quantity klz/kgg'

1 1 2
o< (u) - upkpy i (uy - w3k, (5.31)
Koo - 511K
Using (5.34), Eq. (5.14) becomes inequality (5.35):
2
(u. - w)k
gy (5.3
11 22
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ki2 kie
W (1.2 ), 12 (5.36)
e= 2 K 1Kop 2 ky1Kop

Since u} > u, by (5.29), inequality (5.36) becomes

2
1o s
ul > u 1l - —m} +u, ——— =1u (5.37)
2 2 kllk22 2 kllk22 2

which contradicts the original assumption that Uy < a; (and thus
ug < u2). Thus the proof is complete.

Since it is not known which u_ = a;, calculate ui on the

i

assumption that u, = a;, and calculate ug on the assumption that
U = az. If both ug > a; then both assumptions were correct and the

optimal control is determined.

At least one assumption was correct, thus at least one ug was
computed correctly. Assume u; = a; is correct but u2 = a; is in-
correct; then ué is correct but not ui. The last step is to prove
that ui > ai even though it was computed using an incorrect assumption.

Thus

(af - u)x
" , 2 27712
u o= - = (5.38)
11
and
' + "
uy >0, > us. (5.39)
Again since klz is negative,
(aF - w')k (u" - u)k
2 2 12
0o« S22 2 =2 (5.40)
11 11
Substituting (5.40) into (5.38) gives
" . + 2
- T () - u)ky,
w > uj - = = uj + — >0 (5.1)
11 11722

To sum up, the above proofs show a simple way to calculate the

control that minimizes the quadratic function given by Eq. (5.11):
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1. (Case 1. If ui is not admissible but ué is admissible, then
Uy equals the bound nearest to ui, and uj is determined from
ug. The value of u'! 1is calculated using the known optimal value

+ -
of u., namely o, or Q..
i i i

2. Case 2. If neither wu! nor u'! 1s admissible, then ui is com-

1 2
puted using the bound nearest to ué for Uss and ug is likewise
computed. The optimal control is then determined from Egs. (5.15)
and (5.16).

E. OPTIMAL CONTROL FORMULAS AND RECURRENCE RELATTONS

The recurrence relations when neither control is saturated are the
same as the unsaturated control recurrence relations given in Chapter
ITTI. When both controls are saturated, the relations are the same as
the saturated control recurrence relations in Chapter III, though written
in vector notation. Thus the only new recurrence relations are for the
case in which one control is saturated and the other is not.

Assume the optimal control is given by ul(O) = ui(o) and u2(0) =

ag. The derivation of ui(o) and the recurrence relations begins by
completing the square on ul(O), assuming u2(0) =, (where as usual
a2 represents either a; or aé). Note that completing the square

on ul(O) is not at all the same as completing the square on the vector
u(0).
The elements of the control vector u(O) are separated in Eg. (5.3)

by partitioning the A matrix as follows:

A= (A

1t B0 (5.42)

vhere the A, (i = 1,2) are (mx 1) colum matrices. With this

partitioning, Eq. (5.3) is written as
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z(O)] _ min

[ -
I+l = a; <uy(0) <@

2 °
;(ul(o)yll +2u (0)ayy, + o5y,

+ [@02(0) + Aw (0) + Lo, RCE Py) [92(0) + £ u (0) + A ]

T
+ [®z(0) + Alul(o) + 80,1 Ry

T
+ Ryl0z(0) + £,u (0) + &, ] + Cp) (5.43)
Completing the square on ul(O) gives

Ty, 120007 = ol < ulr(nér)lg oy {12,(0) - u3(0) ]2[&;@ +Eb + ]

- (A z(0) + By JT[Ai(Q + PN)Al + 73 1A 2(0) + B ]

N+1 N+1 lN+l lN+l
+ [©2(0) + A 1T(Q + P ) [®z(0) + Ao ] + a27
= Al J\ 2 2 222

& [02(0) + A0 TR, + Rez(0) + Ao ] + C (5. 144)

z o ] By + Ry loz 2% ) :

where
uf(0) = A;  2(0) + By (5.45)
N+1 TN+L
Ag(Q + PN)®
N (5.46)
A
N+1 Al(Q + PN) 1t
T T
FAN ‘

1By + 8700+ BPdan + g0 )

B = - T (5.47)
N1 N(Q + P)b, + vy
Equations for wu!! and its associated A and B! are deter-
2 2 2
. . N+1 N+1
mined in the same manner.
The recurrence relations for the case where ul = ui and u2 = a2

are determined by equating the assumed form of I l[E(O)] given by

N+
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Eq. (3.20) with Eq. (5.44). These recurrence relations are

g
!

T 1
N+l & (I)(Q+PN)((D + A A (5.148)

1 lN+l

o [Ry + (Q+ P(ABI  +Aa)] (5.49)

RN+l l lN 1

Cy + [ARN+A(Q+P)Aa + 7,0 1B +2052/_\gRN
N+1

Q
Il

N+1

+ap[h(Q + PA, + 7] (5.50)

As shown in Chapter III, the existence of these recurrence relations
shows that the form assumed for I lfz(O) is correct.
The equations and recurrence relations for the two-input control

case are summarized at the end of this chapter.

F. COMPUTING METHOD

Computing proceeds as in Chapter IV with only a few changes. The
first step is to calculate the region of linear control. Next the eight
regions of first saturation are calculated. These are the regions com-
puted from the linear region that have one or both controls saturated.
From each of these regions are calculated nine more regions, regions
with the nine possible combinations of the controls. Regions are computed
in this manner until all the state space of interest is covered.

Certainly the two-dimensional control case will take much more com-
puting time and storage than the one-dimensional case. The method
outlined here could conceivably be extended to higher-dimensional control,

but the complexity increases rapidly.
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SUMMARY OF PRINCIPAIL EQUATIONS FOR TWO-INPUT CONTROL

Optimel return function

T T T
1,02(0) ] = 27 (0)Pz(0) + z (0)Ry + Ryz(0) + Cp (3.20)
Optimal control
u(0) = u'(0) if a” <u(o) <a (unsaturated)
_ . 1 + 1" -
E(O) = Q if ul(O) > o, or ul(O) < o and
+ -
ué(O) >a, or u'2'(O) < g (saturated)
_ 11 + 1" -
ui(O) = o, ui(O) >a, or ui(O) <a; and
if
- +
u.(0) = u'l(o a, <ulo a, ixed
J(0) = w(0) S <uno) <o (mixed)
Definitions

w(0) = Ay, ,2(0) + B o (3.29)
T -1.T
B = -[87(Q + PpA+ DITAN(Q + Py (3.23)
T -1,T - l
By, = -8 (@ + Pp)d + D4Ry (3.24)
b= (b1 ) (5.42)
wj(0) = AL z(0) + B} i=1,2 (5.45)
N+1 N+1
Al + By Yo
AL = - T J - (5.46)
N+1 j(Q + PN) 5755
; AERN + AE(Q + PN)Aiai Yy (5.47)
L= - J 5. 47
J T
N+1 A P A
i HUEBYb
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Recurrence relations:

Unsaturated control

T
Py, =0 (Q+ PN)((D + AAN+1) (3.28)
T
RN+]. = (@ + AAN+1) RN (3.29)
T
Cye1 = O * BB (3.30)
Saturated control
T
Py =@ (Q+ Pplo (3.34)
T
Rppp = @7 By + (@ + Pplia] (3.35)
T T T.T
Cppp = S+ X1 (Q+PN)A+ rl + 2" ARy (3.36)
Mixed control (ui saturated; u, unsaturated)
T 1
Prep =9 (Q+ Pp)(o + A‘jAjNH_) (5.48)
— T 1
Ry, = @ [Ry + (Q + PN)(AJBJNH_ + Aioci)] (5.59)
B T T , T
Chap = CN + [AJRN + AJ,(Q + PN)Aiai * 7% ]BJN+1 + 2aiAi
2 T
+ o [Ai(Q + PN)Ai + 711] (5.50)
Starting conditions
Py = 0, Ry = 0, Co =0
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VI. REXAMPLES

In this chapter four examples of optimal control systems computed
using the method described in Chapter IV are presented. Some optimal
trajectories in state space are also shown. In the final section the

synthesis of the systems is discussed.

A. EXAMPLIE A

For the first example consider the space vehicle described in Chapter
II. The optimal control that minimizes the attitude sum-squared-error
from any initial attitude error and its rate of change is to be found.
Since power consumption is an important design consideration, the total
energy used in controlling the vehicle is charged by including sum-
squared-control in the performance criterion.

A1l parameters are normalized to unity, and the sampling interval

is arbitrarily set at 1 = 1. The resulting system is shown in Fig. 5.

DIGITAL CONTROLLER -~

2 Z

+
--’:r-e-‘ HOLD ]

FIG. 5. BLOCK DIAGRAM OF SYSTEM FOR EXAMPLES A-C.

The state-transition equations, as derived in Chapter II, are

1.0 1.0 0.5
z(n+ 1) = z(n) + u(n), (6.1)
0.0 1.0 1.0
where control is limited by
-1.0 < u(n) < +1.0. (6.2)

SUDAER-148 - Wb




The performance index is

eul

102001 = ) 1)+ v¥a - 1)1 (6.3)

oc
n=1
and thus 1 0
Q= ) r= 1. (6.4)
0 0

The optimal control for this example is shown in Fig. 6. This figure
shows the state space divided into three main parts. In the upper area
of the figure the optimal control is u = -1. This area is composed of
all the alpha-minus regions that were calculated using the method
described in Chapter IV. The boundaries of these regions are not shown
in the figure, since they represent information that is unnecessary to

the synthesis of the system.

e SAMPLING INSTANT

12
1z

(t1,-u)

L6 5201 = ) ()« ln - 1)
n=1

11

I [2(0)] = 68.%97 for z(0) = [ }

o - _h

FIG. 6. OPTIMAL CONTROL FOR EXAMPLE A.
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Through the middle of Fig. 6 are the regions in which the control
is optimally unsaturated, with the region of linear control in the very
center. The feedback parameters for these regions are given in Table 1,

and the optimal control for each of these regions is given by

(0) + B = a

u(0) = Ara? 1 lzl(O) + agzg(o) + b. (6.9)

TABLE 1. FEEDBACK COEFFICIENTS FOR EXAMPLE A

Region AN+l BN+l

No. al ag b

o1 -0.50000 -1.00000 0.00000
02 -. 43902 -1.12195 -0. 48780
03 -.35556 -1.13333 -0.92222
oh -.29240 -1.12281 -1.3274%9
05 -.2L658 -1.10959 -1.71918
06 -. 43902 -1.12195 0. 43780
o7 -.35556 -1.13333 0.92222
08 -.292540 -1.12281 1.32749
09 -.24658 -1.10959 1.71918

The slpha-plus regions, where the optimal contrecl is u = +1, are
shown as the lower part of Fig. 6. Thus the optimal control is determined
for every point in the state space shown.

Figure 6 also shows an optimal trajectory starting from initial con-
dition g?(o) = [11 -4]. The cost for this initial 2z(0) can be
computed either by using Eq. (6.3) or by using

IN[EKO)] = ET(O)PNE(O) + E?(O)RN + REE(O) + Cop

where for the region conteining the particular z(0) used here,
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_1.5616u 1.0274%0
P,. = >

N 1.027h0  1.62329
'-3.9u521
= s C. = 28.74317. (6.7)
& -0.25342 N

Calculated either way the optimal cost is 68.L497.

[Note that the number N--the number of steps to go--is always in-
finitely large, since in this problem there are always an infinite number
of steps to go. However, since it is necessary to be able to distinguish
between the N-stage process and the (N+1)-stage process, the symbol for

C A B or

infinity will not be used to replace N in PN, RN’
Eq. (6.6).]

In Chapter IV it is stated that the matrix (o + AAN+1) is nonsingular

N TN+1” TN+l

when T # 0. For the region of linear control in this example (the 0Ol

region in Fig. 6) this matrix is

0.75 0.50
) = (6.8)
-0.50  0.00

(® + AAN+l

The determinant of this matrix is 0.25, and thus the matrix is nonsingular
as predicted.

Example A might have been solved using dynamic programming, a general
computing method that is able to solve a wide variety of problems, many
of which can be solved in no other way. However, the special method
used to compute this example needed much less memory storage than dynamic
programming would have required. The state-space grid over which this
example was computed contained about 30,000 points. A careful use of
symmetry might have reduced this to about 20,000 points; even so, dynamic
programming would have required at least 60,000 words of storage.

The number of words used by the method of Chapter IV cannot be stated
as a function of the size of the state-space grid, since this number
depends on whether all unused E(l) regions are stored in the fast mem-
ory or on tape, on whether z(1) is calculated from 2(0) or vice verss,

and on how the regions are stored. In computing this example, only the
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boundaries of the regions were stored--a technique that cannot be used
in dynemic programming--and all the information about even the largest
region, the region of linear control, was stored in less than 200 words.
The entire program used only a few thousand words of memory, about one-

tenth as many as would have been required by dynamic programming.

B. EXAMPIE B

Consider the same system as used in Example A. The sampling interval

is still 7 = 1, but the performance index is now

1(0)) = ) [(n) + ). (6.9)
n=1
Thus
1 0
Q= , r=o. (6.10)
0 1

\" e SAMPLING INSTANT

5 3 (2(0)] = Ej[z?n)+ 25(n)]
- -6 n=1
-6.0
I (2(0)1 = 445,454 for z(0} =
5.5
T=1.0

FIG. 7. OPTIMAL CONTROL FOR EXAMPLE B.
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The optimal control is shown in Fig. T along with an optimal
trajectory. An extended picture of the optimal control is given in Fig.

8. Because the bounds on the control are symmetrical, the regions

FIG. 8. EXTENDED REGION OF OPTIMAL CONTROL FOR EXAMPLE B.

are symmetric with respect to the origin, and thus only half the un-
saturated regions are shown in Fig. 8. The feedback parameters AN+l
of symmetric regions have the same value and sign, while the B

have the opposite sign. The feedback parameters for both Figs‘N;land 8
are given in Table 2.

The optimal trajectory shown in Fig. 7 begins at E?(O) = [-6.0 5.5].
The cost associated with this initial condition can be computed by using
either Eq. (6.6) or (6.9). 1In either case the cost is L45.45L, where

for the alpha-minus region containing E(O)’

i 9.28916 46.95783
46.95783 305.14152

[ -149,32529
= 5 C, = 4136.7h0k. (6.11)
g -1086.26k49 N
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TABLE 2. FEEDBACK COEFFICIENTS FOR EXAMPLE B

Region AN+1 BN+1

No. al ag b

o1 -0.66667 -1.33333 0.00000
02 -. 47058 -1.23529 -0.44118
03 -.36145 -1.18072 -0.85542
oh -.29268 -1.14634 -1.25610
05 -.24561 -1.12281 -1.64912
06 -.211h5 -1.10573 -2.037k4kL
o7 -.18557 -1.09278 -2. 42268
08 -.16528 -1.0826k -2.80578
09 -.14898 -1.074k9 -3.18735
10 -. 14792 -1.07396 -3.21698
11 -.13599 -1.06779 -3.56779

It is proved in Chapter IV that if T = O the matrix (& + AAN+1)
is singular. For this example the matrix for the region of linear con-
trol is

2/3  1/3

(& + DA ) = (6.12)
N+1 _-2/3 _1/3

which is certainly singular. Direct calculation shows that for any of
the AN_+l calculated in this example this matrix is singular.
Computing the minimum cost from Eg. (6.9) requires summing an infinite

series. This is particularly easy in this case where the matrix (6.12)

is singular. If E(O) is in the region of linear control, then the

z(n) (n=1, 2, ...) always lie on a line through the origin, in this
case the line with slope -1 shown dashed in Fig. 7. Since zl(n) =
‘Zg(n)’ using (6.12) with (6.1) shows that each z(n + 1) 1is given by

the geometrical progression

z(n + 1) = én) n=1, 2, ... (6.13)
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Thus the optimal cost is given by

© (1) +z (1) 22(1)
I 12(0)] Z _ o2 (1)2 L (6.1k)
=1 a—l

C. EXAMPLE C

This example shows the effect of increasing the sampling rate. The
system is the same as in Example B, but the sampling interval T = 0.1
is one-~tenth as long.

As shown in Fig. 9, the band of regions of unsaturated control is
much narrower than in Fig. 7 of Example B. Since the regions are much
smaller, there are many, many more of them. There are over 20 regions
of unsaturated control on each side of the region of linear control in
the state space shown in Fig. 9. The boundaries separating these regions
are not shown because they are so close together.

The optimal control for the regicn of linear control is given by

= (_9.52382)21 + (_1o.u7619)z2. (6.15)
The AN+1 for the region of linear contrcl was calculated, beginning
with PO = 0, by the iteration method discussed in Chapter IV. AN+l

in Example B took eight iterations to converge to six significant figures;
in Example C it took about 80 iterations to converge to the same number

of figures.

D. EXAMPLE D

This example, perhaps the most interesting presented here, considers
the artificial earth satellite, including the external force due to the
gravity gradient, discussed in Chapter II. All parameters are normalized
and the sampling interval is arbitrarily and somewhatl unrealistically set
at T = 1. Thus the state-vector-transition equation is

0.54030  0.8L1lky 0..45970

z(n + 1) = z(n) + u(n) (6.16)
B -0.84147  0.54030 0.84147
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where the control is limited by Eq. (6.2). This system is shown in

Fig. 10.

DIGITAL CONTROLLER ety

Zy

+] +
L/ 5] o 4 2

FIG. 10. BLOCK DIAGRAM OF SYSTEM FOR EXAMPLE D.

It is desired to make the attitude integral-squared-error a minimun,
and as an approximation the attitude sum-squared-error will be minimized.
(This approximation will unfortunately cause a phenomenon known as inter-
sample ripple, as will be shown later.) There is no cost on the control,

thus the performance index is

g [2(0) - 22 () (6.17)
ﬁ;i
Therefore
1 0
Q= ’ T = 0. (6]_5)
0 0

For the purpose of comparison, a simple nonoptimal system is shown
in Fig. 11. This system uses the optimal feedback gains ay and a2
of the region of linear control, and thus is optimal for initial condi-
tions close to the origin in state space. If the total output of these
feedback blocks causes saturation of the input, then this is simply
allowed to happen. Thus Fig. 11 shows a system that is extremely simple
to bulld 2nd is optimal for sm=ll initial conditions.

The optimal control regions are shown in Fig. 12; the optimzal feed-

back coefficients for the unsaturated regions are given in Table 3.
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FIG. 11. NONOPTIMAL SYSTEM OF EXAMPLE D.
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FIG. 12. OPTIMAL CONTROL FOR EXAMPLE D.
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TABLE 3. FEEDBACK CCEFFICIENTS FOR EXAMPLE D

Region AN+l BN+l

No. al a2 b
o1 -1.17534 -1.830k49 0.00000
02 0.13289 -1.11580 -0.390kk
03 0.35351 -0.99526 -0.62492
ok 0.31743 -1.01498 -0.56883
05 0.49316 -0.91898 -0.860L46
06 0.53957 -0.89363 -0.95780
o7 0.55971 -0.88262 -1.01570
08 0.66825 -0.82333 -1.38211
09 0.60572 -0.85749 -1.16421
10 0.64gL2 -0.83362 -1.33612
11 0.66819 -0.82336 -1.542508
12 0.76747 -0.76912 -1.94701
13 0.71067 -0.80016 -1.64189
1k 0.75047 -0.77841 -1.87443
15 0.63394 -0.84207 -1.17957
: 16 0. 49844 -0.91610 1.96661

These feedback coefficients are used in Eq. (6.5) to determine the
optimal control.

An optimal trajectory from initial condition E?(O) = [-5.0 3.01]
is shown in Fig. 12. This initial condition is in alpha-minus region 16
as shown in the figure. When the state vector reaches the region of
linear control, it enters a limit cycle rather than going to the origin.
The value of zl(n) at the sampling instants is zero in this limit
cycle, thus no cost is charged to the performance index (6.17). However,
the attitude error zl(t) is zero only at the sampling instants, and
thus there exists a phenomenon known as intersample ripple [Ref. 15].
This ripple can be eliminated during the design of the system by adding

a charge on either z2(n) or u(n - 1).
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The cost of the trajectory shown in Fig. 12, as determined either

by (6.17) or by (6.6), is 32.702. This cost is most easily determined
by (6.6), where

2.947579 -0.831075
P_= )

N 1.0.831075 %.033005
9.389736 M. 08000 (6.19)
_ , ¢ = 48.08509 .19
k& -9. 400775 N

for the region containing 2z(0)--alpha-minus region 16 in Fig. 12.
The control for the nonoptimal system of Fig. 11 is given in Fig. 13.

Between the two parallel lines the control is given by
u = (_1.175343)21 + (_1.830488)z2 (6.20)

where the two lines are determined by setting u = +1 in (6.20). The
trajectory shown in Fig. 13 from initial condition E?(O) = [-5.0 3.0]
has a cost determined from Eq. (6.17) of 73.154, an increase of 124 per-
cent over the optimal system. Thus, though considerably more complicated
to mechanize, the optimal system 1s a substantial improvement over the

simple system of Fig. 11.

E. THE SYNTHESIS

The optimal design of a system is often used only as a standard of
comparison for the system that is actually built. However, if the truly
optimal system is to be synthesized, the feedback coefficients of the
unsaturated regions can be stored in a special-purpose digital cowmputer.
The computer takes the value of the state vector at the sampling instant
and decides whether the control u is optimally a+, a—, or unsaturated.
If w is optimally unsaturated, the computer determines which unsatu-
rated region the state vector is in, and computes the control using Eq.
(6.5).

Approximations to the optimal system can be made with varying degrees
of accuracy. For example, some of the unsaturated regions can be com-

bined into one region with little deviation from the optimal cost; or all
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e SAMPLING INSTANT

0

= Z‘ zi(n)

n=1

' -5
73.154 for z(0) = [ j]
- 3

FIG. 13. CONTROL FOR SYSTEM OF FIG. 11.

of the unsaturated regions can be eliminated, using their location as
a guide to the placement of a piecewise linear switching curve. Around
the origin in state space, however, the control must be linear if the

system is to return to equilibrium.
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